
manuscript submitted to Geophysical Research Letters

Evaluating Cloud-Optimized HDF5 for NASA’s1

ICESat-2 Mission2

Luis A. Lopez1, Andrew P. Barrett1, Amy Steiker1, Aleksandar Jelenak2, Lisa3

Kaser1, Jeffrey E. Lee34

1CIRES, National Snow and Ice Data Center, University of Colorado, Boulder., Boulder, CO, USA5
2The HDF Group, Champaign, IL, USA6

3NASA Goddard Space Flight Center, NASA / KBR, Greenbelt, MD, USA7

–1–



manuscript submitted to Geophysical Research Letters

Abstract8

The Hierarchical Data Format (HDF) is a common archival format for n-dimensional9

scientific data; it has been utilized to store valuable information from astrophysics to10

earth sciences and everything in between. As flexible and powerful as HDF can be,11

it comes with big tradeoffs when it’s accessed from remote storage systems, mainly12

because the file format and the client I/O libraries were designed for local and su-13

percomputing workflows. As scientific data and workflows migrate to the cloud ,14

efficient access to data stored in HDF format is a key factor that will accelerate or15

slow down “science in the cloud” across all disciplines. We present an implemen-16

tation of recently available features in the HDF5 stack that results in performant17

access to HDF from remote cloud storage. This performance is on par with modern18

cloud-native formats like Zarr but with the advantage of not having to reformat19

data or generate metadata sidecar files (DMR++, Kerchunk). Our benchmarks20

also show potential cost-savings for data producers if their data are processed using21

cloud-optimized strategies.22

1 Problem23

Scientific data from NASA and other agencies are increasingly being distributed24

from the commercial cloud. Cloud storage enables large-scale workflows and should25

reduce local storage costs. It also allows the use of scalable on-demand cloud com-26

puting resources by individual scientists and the broader scientific community. How-27

ever, the majority of this scientific data is stored in a format that was not designed28

for the cloud: The Hierarchical Data format or HDF.29

The most recent version of the Hierarchical Data Format is HDF5, a common30

archival format for n-dimensional scientific data; it has been utilized to store valu-31

able information from astrophysics to earth sciences and everything in between.32

As flexible and powerful as HDF5 can be, it comes with big trade-offs when it’s33

accessed from remote storage systems.34

HDF5 is a complex file format; we can think of it as a file system using a tree-like35

structure with multiple data types and native data structures. Because of this com-36

plexity, the most reliable way of accessing data stored in this format is using the37

HDF5 C API. Regardless of access pattern, nearly all tools ultimately rely on the38

HDF5-C library and this brings a couple issues that affect the efficiency of accessing39

this format over the network:40

41

1.0.1 Metadata fragmentation42

When working with large datasets, especially those that include numerous variables43

and nested groups, the storage of file-level metadata can become a challenge. By de-44

fault, metadata associated with each dataset is stored in chunks of 4 kilobytes (KB).45

This chunking mechanism was originally intended to optimize storage efficiency and46

access speed on disks with hardware resources available more than 20 years ago. In47

datasets with many variables and/or complex hierarchical structures, these 4KB48

chunks can lead to significant fragmentation.49

Fragmentation occurs when this metadata is spread out across multiple non-contiguous50

chunks within the file. This results in inefficiencies when accessing or modifying data51

because compatible libraries need to read from multiple, scattered locations in the52

file. Over time, as the dataset grows and evolves, this fragmentation can compound,53

leading to degraded performance and increased storage overhead. In particular, op-54

erations that involve reading or writing metadata, such as opening a file, checking55

attributes, or modifying variables, can become slower and more resource-intensive.56

–2–



manuscript submitted to Geophysical Research Letters

1.0.2 Global API Lock57

Because of the historical complexity of operations with the HDF5 format(The HDF58

Group, n.d.), there has been a necessity to make the library thread-safe and simi-59

larly to what happens in the Python language, the simplest mechanism to imple-60

ment this is to have a global API lock. This global lock is not as big of an issue61

when we read data from local disk but it becomes a major bottleneck when we read62

data over the network because each read is sequential and latency in the cloud is63

exponentially bigger than local access (MDN, 2024) (Scott, 2020).64

65

Figure 1: shows how reads (Rn) are done in order to access file metadata, In the first
read, R0, the HDF5 library verifies the file signature from the superblock, subsequent
reads, R1, R2,…Rn, read file metadata, 4kb at the time.

1.0.3 Background and data selection66

As a result of community feedback and “hack weeks” organized by NSIDC and UW67

eScience Institute in 2023(ICESAT-2 HackWeek, 2023), NSIDC started the Cloud68

Optimized Format Investigation (COFI) project to improve access to HDF5 from69

the ICESat-2 mission, a spaceborne lidar that retrieves surface topography of the70

Earth’s ice sheets, land and oceans (Neumann et al., 2019). Because of its complex-71

ity, large size and importance for cryospheric studies we targeted the ATL03 data72

product. The most relevant variable in ATL03 are geolocated photon heights from73

the ICESat-2 ATLAS instrument. Each ATL03 file contains 1003 geophysical vari-74

ables in 6 data groups. Although our research was focused on this dataset, most of75

our findings are applicable to any dataset stored in HDF5 and NetCDF4.76

2 Methodology77

We tested access times to original and different configurations of cloud-optimized78

HDF5 ATL03 files stored in AWS S3 buckets in region us-west-2, the region hosting79

NASA’s Earthdata Cloud archives. Files were accessed using Python tools com-80

monly used by Earth scientists: h5py and Xarray(Hoyer & Hamman, 2017). h5py is81

a Python wrapper around the HDF5 C API. xarray1 is a widely used Python pack-82

age for working with n-dimensional data. We also tested access times using h5coro,83

a python package optimized for reading HDF5 files from S3 buckets and kerchunk, a84

1 h5py is a dependency of Xarray

–3–

https://its-live-data.s3.amazonaws.com/index.html#test-space/cloud-experiments/h5cloud/


manuscript submitted to Geophysical Research Letters

tool that creates an efficient lookup table for file chunks to allow performant partial85

reads of files.86

The test files were originally cloud optimized by “repacking” them, using a relatively87

new feature in the HDF5 C API called “paged aggregation”. Page aggregation does88

2 things: first, it collects file-level metadata from datasets and stores it on dedicated89

metadata blocks at the front of the file; second, it forces the library to write both90

data and metadata using these fixed-size pages. Aggregation allows client libraries91

to read file metadata with only a few requests using the page size as a fixed request92

size, overriding the 1 request per chunk behavior.93

Figure 2: shows how file-level metadata and data gets internally packed once we use
paged aggregation on a file.

As we can see in Figure 2, when we cloud optimize a file using paged-aggregation94

there are some considerations and behavior that we had to take into account. The95

first thing to observe is that page aggregation will –as we mentioned– consolidate96

the file-level metadata at the front of the file and will add information in the so-97

called superblock2 The next thing to notice is that page size us uses across the98

board for metadata and data as of October 2024 and version 1.14 of the HDF599

library, page size cannot dynamically adjust to the total metadata size.100

This one page size for all approach simplifies how the HDF5 API reads the file (if101

configured) but it also brings unused page space and chunk over-reads. In the case102

of the ICESat-2 dataset (ATL03) the data itself has been partitioned and each gran-103

ule represents a segment in the satellite orbit and within the file the most relevant104

dataset is chunked using 10,000 items per chunk, with data being float-32 and using105

a fast compression value, the resulting chunk size is on average under 40KB, which106

is really small for an HTTP request, especially when we have to read them sequen-107

tially. Because of these considerations, we opted for testing different page sizes, and108

2 The HDF5 superblock is a crucial component of the HDF5 file format, acting as the starting point
for accessing all data within the file. It stores important metadata such as the version of the file format,
pointers to the root group, and addresses for locating different file components

–4–



manuscript submitted to Geophysical Research Letters

Figure 3: shows how file-level metadata and data packing inside aggregated pages leave
unused space that can potentially increase the file size in a considerable way.

increase chunk size. The following table describes the different configurations used in109

our tests.110

prefix description
% file size
increase

~km
per
chunk shape

page
size avg_chunk_size

original original file from ATL03
v6 (1gb and 7gb)

0 1.5km (10000,)N/A 35kb

original-
kerchunk

kerchunk sidecar of the
original file

N/A 1.5km (10000,)N/A 35kb

page-only-
4mb

paged-aggregated file
with 4mb per page

~1% 1.5km (10000,)4MB 35kb

page-only-
8mb

paged-aggregated file
with 4mb per pag8

~1% 1.5km (10000,)8MB 35kb

rechunked-
4mb

page-aggregated and
bigger chunk sizes

~1% 10km (100000,)4MB 400kb

rechunked-
8mb

page-aggregated and
bigger chunk sizes

~1% 10km (100000,)8MB 400kb

rechunked-
8mb-
kerchunk

kerchunk sidecar of the
last paged-aggregated file

N/A 10km (100000,)8MB 400kb

This table represents the different configurations we used for our tests in 2 file sizes.111

It’s worth noticing that we encountered a few outlier cases where compression and112

chunk sizes led page aggregation to an increase in file size of approximately 10%113

which was above the desired value for NSIDC (5% max) We tested these files using114

the most common libraries to handle HDF5 and 2 different I/O drivers that support115

remote access to AWS S3, fsspec and the native S3. The results of our testing is116

explained in the next section and the code to reproduce the results is in the attached117

notebooks.118

–5–



manuscript submitted to Geophysical Research Letters

3 Results119

Figure 4: shows that using paged aggregation alone is not a complete solution. This
behavior us caused by over-reads of data now distributed in pages and the internals of
HDF5 not knowing how to optimize the requests. This means that if we cloud optimize
alone and use the same code, in some cases we’ll make access to these files even slower.
A very important thing to notice here is that rechunking the file, in this case using 10X
bigger chunks results in a predictable 10X improvement in access times without any cloud
optimization involved. Having less chunks generates less metadata and bigger requests, in
general is it recommended that chunk sizes should range between 1MB and 10MB[Add ci-
tation, S3 and HDF5] and if we have enough memory and bandwidth even bigger (Pangeo
recommends up to 100MB chunks)[Add citation.]

4 Recommendations120

We have split our recommendations for the ATL03 product into 3 main categories,121

creating the files, accessing the files, and future tool development.122

4.1 Recommended cloud optimizations123

Based on our testing we recommend the following cloud optimizations for creating124

HDF5 files for the ATL03 product: Create HDF5 files using paged aggregation by125

setting HDF5 library parameters:126

1. File page strategy: H5F_FSPACE_STRATEGY_PAGE127

2. File page size: 8000000 If repacking an existing file, h5repack contains the128

code to alter these variables inside the file129

h5repack -S PAGE -G 8000000 input.h5 output.h5

3. Avoid using unlimited dimensions when creating variables because the HDF5130

API cannot support it inside buffered pages and representation of these vari-131

ables is not supported by Kerchunk.132

4.1.1 Reasoning133

Based on the variable size of ATL03 it becomes really difficult to allocate a fixed134

metadata page, big files contain north of 30MB of metadata, but the median sized135

file is below 8MB. If we had adopted user block we would have caused an increase in136

the file size and storage cost of approximate 30% (reference to our tests). Another137

consequence of using a dedicated fixed page for file-level metadata is that metadata138

overflow will generate the same impact in access times, the library will fetch the139

metadata in one go but the rest will be using the predefined block size of 4kb.140

–6–



manuscript submitted to Geophysical Research Letters

Figure 5: shows that performance once the I/O configuration is aligned with the chunk-
ing in the file, access times perform on par with cloud optimized access patterns like
Kerchunk/Zarr. These numbers are from in-region execution. Out of region is consider-
able slower for the non cloud optimized case.

Paged aggregation is thus the simplest way of cloud optimizing an HDF5 file as the141

metadata will keep filling dedicated pages until all the file-level metadata is stored142

at the front of the file. Chunk sizes cannot be larger than the page size and when143

chunk sizes are smaller we need to take into account how these chunks will fit on a144

page, in an ideal scenario all the space will be filled but that is not the case and we145

will end up with unused space See 2.146

4.2 Recommended access patterns147

In progress148

4.3 Recommended tooling development149

In progress150

4.4 Mission implementation151

ATL03 is a complex science data product containing both segmented (20 meters152

along-track) and large, variable-rate photon datasets. ATL03 is created using153

pipeline-style processing where the science data and NetCDF-style metadata are154

written by independent software packages. The following steps were employed to155

create cloud-optimized Release 007 ATL03 products, while minimizing increases in156

file size:157

1. Set the “file space strategy” to H5F_FSPACE_STRATEGY_PAGE and158

enabled “free space tracking” within the HDF5 file creation property list.159

2. Set the “file space page size” to 8MiB.160

3. Changed all “COMPACT” dataset storage types to “CONTIGUOUS”.161

4. Increased the “chunk size” of the photon-rate datasets (from 10,000 to 100,000162

elements), while making sure no “chunk sizes” exceeded the 8MiB “file space163

page size”.164

5. Introduced a new production step that executes the “h5repack” utility (with165

no options) to create a “defragmented” final product.166

5 Discussion167

1. Chunking shapes and sizes168

2. Paged aggregation vs User block169

3. Side effects on different access patterns, e.g. Kerchunk170

–7–



manuscript submitted to Geophysical Research Letters

6 References171

Hoyer, S., & Hamman, J. (2017). Xarray: N-D labeled arrays and datasets in172

python. J. Open Res. Softw., 5(1), 10.173

ICESAT-2 HackWeek, H. C. (2023). h5cloud: Tools for cloud-based analysis of174

HDF5 data (Version v1.0.0). Retrieved from https://github.com/ICESAT175

-2HackWeek/h5cloud176

MDN, M. (2024, May). Understanding latency. Retrieved from https://developer177

.mozilla.org/en-US/docs/Web/Performance/Understanding_latency178

Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner, A. C.,179

et al. (2019). The ice, cloud, and land elevation satellite – 2 mission: A global180

geolocated photon product derived from the advanced topographic laser altimeter181

system. Remote Sensing of Environment, 233, 111325. https://doi.org/https://182

doi.org/10.1016/j.rse.2019.111325183

Scott, C. (2020). Numbers every programmer should know. Retrieved from https://184

colin-scott.github.io/personal_website/research/interactive_latency185

.html186

The HDF Group. (n.d.). Hierarchical Data Format, version 5. Retrieved from187

https://github.com/HDFGroup/hdf5188

–8–

https://github.com/ICESAT-2HackWeek/h5cloud
https://github.com/ICESAT-2HackWeek/h5cloud
https://github.com/ICESAT-2HackWeek/h5cloud
https://developer.mozilla.org/en-US/docs/Web/Performance/Understanding_latency
https://developer.mozilla.org/en-US/docs/Web/Performance/Understanding_latency
https://developer.mozilla.org/en-US/docs/Web/Performance/Understanding_latency
https://doi.org/10.1016/j.rse.2019.111325
https://doi.org/10.1016/j.rse.2019.111325
https://doi.org/10.1016/j.rse.2019.111325
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://github.com/HDFGroup/hdf5

