import xarray as xr
store = 'https://ncsa.osn.xsede.org/Pangeo/pangeo-forge/noaa-coastwatch-geopolar-sst-feedstock/noaa-coastwatch-geopolar-sst.zarr'
ds = xr.open_dataset(store, engine='zarr', chunks={})
ds
<xarray.Dataset> Dimensions: (time: 7134, lat: 3600, lon: 7200) Coordinates: * lat (lat) float32 -89.97 -89.93 -89.88 ... 89.88 89.93 89.97 * lon (lon) float32 -180.0 -179.9 -179.9 ... 179.9 179.9 180.0 * time (time) datetime64[ns] 2002-09-01T12:00:00 ... 2022-03-2... Data variables: analysed_sst (time, lat, lon) float32 dask.array<chunksize=(2, 1800, 7200), meta=np.ndarray> analysis_error (time, lat, lon) float32 dask.array<chunksize=(2, 1800, 7200), meta=np.ndarray> mask (time, lat, lon) float32 dask.array<chunksize=(2, 1800, 7200), meta=np.ndarray> sea_ice_fraction (time, lat, lon) float32 dask.array<chunksize=(2, 1800, 7200), meta=np.ndarray> Attributes: (12/47) Conventions: CF-1.4, Unidata Observation Dataset v1.0 Metadata_Conventions: Unidata Observation Dataset v1.0 acknowledgment: NOAA/NESDIS cdm_data_type: grid comment: The Geo-Polar Blended Sea Surface Temperature... creator_email: andy.harris@noaa.gov ... ... summary: An SST estimation scheme which combines multi... time_coverage_end: 20020902T000000Z time_coverage_start: 20020901T000000Z title: Analysed blended sea surface temperature over... uuid: 7c4fc02a-1034-4021-be6f-c3ce858fd33a westernmost_longitude: -180.0
xarray.Dataset
- time: 7134
- lat: 3600
- lon: 7200
- lat(lat)float32-89.97 -89.93 ... 89.93 89.97
- axis :
- Y
- comment :
- equirectangular projection
- long_name :
- latitude
- standard_name :
- latitude
- units :
- degrees_north
- valid_max :
- 90.0
- valid_min :
- -90.0
array([-89.975, -89.925, -89.875, ..., 89.875, 89.925, 89.975], dtype=float32)
- lon(lon)float32-180.0 -179.9 ... 179.9 180.0
- axis :
- X
- comment :
- equirectangular projection
- long_name :
- longitude
- standard_name :
- longitude
- units :
- degrees_east
- valid_max :
- 180.0
- valid_min :
- -180.0
array([-179.975, -179.925, -179.875, ..., 179.875, 179.925, 179.975], dtype=float32)
- time(time)datetime64[ns]2002-09-01T12:00:00 ... 2022-03-...
- axis :
- T
- comment :
- Nominal time of Level 4 analysis
- long_name :
- reference time of sst field
- standard_name :
- time
array(['2002-09-01T12:00:00.000000000', '2002-09-02T12:00:00.000000000', '2002-09-03T12:00:00.000000000', ..., '2022-03-18T12:00:00.000000000', '2022-03-19T12:00:00.000000000', '2022-03-20T12:00:00.000000000'], dtype='datetime64[ns]')
- analysed_sst(time, lat, lon)float32dask.array<chunksize=(2, 1800, 7200), meta=np.ndarray>
- comment :
- Analysed SST for each ocean grid point
- long_name :
- analysed sea surface temperature
- reference :
- Fieguth,P.W. et al. "Mapping Mediterranean altimeter data with a multiresolution optimal interpolation algorithm", J. Atmos. Ocean Tech, 15 (2): 535-546, 1998. Fieguth, P. Multiply-Rooted Multiscale Models for Large-Scale Estimation, IEEE Image Processing, 10(11), 1676-1686, 2001. Khellah, F., P.W. Fieguth, M.J. Murray and M.R. Allen, "Statistical Processing of Large Image Sequences", IEEE Transactions on Geoscience and Remote Sensing, 12 (1), 80-93, 2005. Maturi, E., A. Harris, J. Mittaz, J. Sapper, G. Wick, X. Zhu, P. Dash, P. Koner, "A New High-Resolution Sea Surface Temperature Blended Analysis", Bulleting of the American Meteorological Society, 98 (5), 1015-1026, 2017.
- source :
- STAR-ACSPO_GAC, STAR-ACSPO_H-8, STAR-Geo_SST, UKMO-OSTIA
- standard_name :
- sea_surface_foundation_temperature
- units :
- kelvin
- valid_max :
- 4000
- valid_min :
- -200
Array Chunk Bytes 688.86 GiB 98.88 MiB Shape (7134, 3600, 7200) (2, 1800, 7200) Dask graph 7134 chunks in 2 graph layers Data type float32 numpy.ndarray - analysis_error(time, lat, lon)float32dask.array<chunksize=(2, 1800, 7200), meta=np.ndarray>
- comment :
- Estimate of internal analysis accuracy
- long_name :
- estimated error standard deviation of analysed_sst
- units :
- kelvin
- valid_max :
- 500
- valid_min :
- 0
Array Chunk Bytes 688.86 GiB 98.88 MiB Shape (7134, 3600, 7200) (2, 1800, 7200) Dask graph 7134 chunks in 2 graph layers Data type float32 numpy.ndarray - mask(time, lat, lon)float32dask.array<chunksize=(2, 1800, 7200), meta=np.ndarray>
- comment :
- b0: 1=grid cell is water, b1: 1=grid cell is land, b2: 1=grid cell is ice
- flag_meanings :
- water land ice
- flag_values :
- [1, 2, 4]
- long_name :
- sea/land/ice bit mask
- source :
- OSTIA reanalysis land mask
- standard_name :
- sea_land_ice_bit_mask
- valid_max :
- 4
- valid_min :
- 1
Array Chunk Bytes 688.86 GiB 98.88 MiB Shape (7134, 3600, 7200) (2, 1800, 7200) Dask graph 7134 chunks in 2 graph layers Data type float32 numpy.ndarray - sea_ice_fraction(time, lat, lon)float32dask.array<chunksize=(2, 1800, 7200), meta=np.ndarray>
- comment :
- Percentage of ice
- long_name :
- sea ice fraction
- source :
- OSTIA reanalysis ice mask
- standard_name :
- sea_ice_area_fraction
- units :
- 1
- valid_max :
- 100
- valid_min :
- 0
Array Chunk Bytes 688.86 GiB 98.88 MiB Shape (7134, 3600, 7200) (2, 1800, 7200) Dask graph 7134 chunks in 2 graph layers Data type float32 numpy.ndarray
- latPandasIndex
PandasIndex(Float64Index([ -89.9749984741211, -89.92500305175781, -89.875, -89.82499694824219, -89.7750015258789, -89.7249984741211, -89.67500305175781, -89.625, -89.57499694824219, -89.5250015258789, ... 89.5250015258789, 89.57499694824219, 89.625, 89.67500305175781, 89.7249984741211, 89.7750015258789, 89.82499694824219, 89.875, 89.92500305175781, 89.9749984741211], dtype='float64', name='lat', length=3600))
- lonPandasIndex
PandasIndex(Float64Index([-179.97500610351562, -179.9250030517578, -179.875, -179.8249969482422, -179.77499389648438, -179.72500610351562, -179.6750030517578, -179.625, -179.5749969482422, -179.52499389648438, ... 179.52499389648438, 179.5749969482422, 179.625, 179.6750030517578, 179.72500610351562, 179.77499389648438, 179.8249969482422, 179.875, 179.9250030517578, 179.97500610351562], dtype='float64', name='lon', length=7200))
- timePandasIndex
PandasIndex(DatetimeIndex(['2002-09-01 12:00:00', '2002-09-02 12:00:00', '2002-09-03 12:00:00', '2002-09-04 12:00:00', '2002-09-05 12:00:00', '2002-09-06 12:00:00', '2002-09-07 12:00:00', '2002-09-08 12:00:00', '2002-09-09 12:00:00', '2002-09-10 12:00:00', ... '2022-03-11 12:00:00', '2022-03-12 12:00:00', '2022-03-13 12:00:00', '2022-03-14 12:00:00', '2022-03-15 12:00:00', '2022-03-16 12:00:00', '2022-03-17 12:00:00', '2022-03-18 12:00:00', '2022-03-19 12:00:00', '2022-03-20 12:00:00'], dtype='datetime64[ns]', name='time', length=7134, freq=None))
- Conventions :
- CF-1.4, Unidata Observation Dataset v1.0
- Metadata_Conventions :
- Unidata Observation Dataset v1.0
- acknowledgment :
- NOAA/NESDIS
- cdm_data_type :
- grid
- comment :
- The Geo-Polar Blended Sea Surface Temperature (SST) Analysis combines multi-satellite retrievals of sea surface temperature into a single analysis of SST
- creator_email :
- andy.harris@noaa.gov
- creator_name :
- Satellite Applications and Research
- creator_url :
- www.star.nesdis.noaa.gov
- date_created :
- 20170622T163825Z
- easternmost_longitude :
- 180.0
- file_quality_level :
- 0.0
- gds_version_id :
- 2.0
- geospatial_lat_resolution :
- 0.05
- geospatial_lat_units :
- degrees north
- geospatial_lon_resolution :
- 0.05
- geospatial_lon_units :
- degrees east
- history :
- Fri Oct 19 11:12:34 2018: ncatted -a add_offset,analysis_error,o,f,0. 20020901000000-STAR-L4_GHRSST-SSTfnd-Geo_Polar_Blended_Night-GLOB-v02.0-fv01.0.nc Fri Oct 19 11:09:25 2018: ncatted -a add_offset,analysed_sst,o,f,273.15 20020901000000-STAR-L4_GHRSST-SSTfnd-Geo_Polar_Blended_Night-GLOB-v02.0-fv01.0.nc NESDIS geo-SST L1 to L2 processor, NESDIS Advanced Clear-Sky Processor for Oceans (ACSPO), NESDIS Geo-Polar 1/20th degree Blended SST Analysis
- id :
- Geo_Polar_Blended_Night-STAR-L4-GLOB-v1.0
- institution :
- Office of Satellite Products and Operations
- keywords :
- Oceans > Ocean Temperature > Sea Surface Temperature
- keywords_vocabulary :
- NASA Global Change Master Directory (GCMD) Science Keywords
- license :
- GHRSST protocol describes data use as free and open
- metadata_link :
- http://podaac.jpl.nasa.gov:8890/ws/metadata/dataset?format=iso&shortName=Geo_Polar_Blended_Night-STAR-L4-GLOB-v1.0
- naming_authority :
- org.ghrsst
- netcdf_version_id :
- 4.1.3
- northernmost_latitude :
- 90.0
- platform :
- NOAA-16, NOAA-17, NOAA-18, NOAA-19, MetOpA, Himawari-8, GOES10, GOES11, GOES12, GOES13, GOES15, MTSAT1R, MTSAT2
- processing_level :
- L4
- product_version :
- 1.0
- project :
- Group for High Resolution Sea Surface Temperature
- publisher_email :
- ghrsst-po@nceo.ac.uk
- publisher_name :
- The GHRSST Project Office
- publisher_url :
- http://www.ghrsst.org
- references :
- Fieguth,P.W. et al. "Mapping Mediterranean altimeter data with a multiresolution optimal interpolation algorithm", J. Atmos. Ocean Tech, 15 (2): 535-546, 1998. Fieguth, P. Multiply-Rooted Multiscale Models for Large-Scale Estimation, IEEE Image Processing, 10(11), 1676-1686, 2001. Khellah, F., P.W. Fieguth, M.J. Murray and M.R. Allen, "Statistical Processing of Large Image Sequences", IEEE Transactions on Geoscience and Remote Sensing, 12 (1), 80-93, 2005. Maturi, E., A. Harris, J. Mittaz, J. Sapper, G. Wick, X. Zhu, P. Dash, P. Koner, "A New High-Resolution Sea Surface Temperature Blended Analysis", Bulleting of the American Meteorological Society, 98 (5), 1015-1026, 2017.
- sensor :
- AVHRR_GAC, AHI, GOES_Imager, JAMI
- source :
- STAR-ACSPO_GAC, STAR-ACSPO_H-8, STAR-Geo_SST, UKMO-OSTIA
- southernmost_latitude :
- -90.0
- spatial_resolution :
- 0.05 degree
- standard_name_vocabulary :
- NetCDF Climate and Forecast (CF) Metadata Convetion
- start_time :
- 20020901T000000Z
- stop_time :
- 20020902T000000Z
- summary :
- An SST estimation scheme which combines multi-satellite retrievals of sea surface temperature datasets available from polar orbiters, geostationary IR and microwave sensors into a single global analysis. This global SST ananlysis provide a daily gap free map of the foundation sea surface temperature at 0.05o spatial resolution.
- time_coverage_end :
- 20020902T000000Z
- time_coverage_start :
- 20020901T000000Z
- title :
- Analysed blended sea surface temperature over the global ocean
- uuid :
- 7c4fc02a-1034-4021-be6f-c3ce858fd33a
- westernmost_longitude :
- -180.0